An Ameliorated Methodology for Feature Subset Selection on High Dimensional Data using Precise Relevance Measures
نویسندگان
چکیده
منابع مشابه
Feature Subset Selection using Rough Sets for High Dimensional Data
---------------------------------------------------------------------***--------------------------------------------------------------------Abstract Feature Selection (FS) is applied to reduce the number of features in many applications where data has multiple features. FS is an essential step in successful data mining applications, which can effectively reduce data dimensionality by removing t...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملConstrained Based Feature Subset Selection Algorithm for High Dimensional Data
Feature Selection is to selecting the useful features from the original dataset for improve the more accurate results. Constrained Based Feature Subset Selection(CFSS) Algorithm Removes irrelevant and redundant features. This method is to find a similarity computation based on the entropy and conditional entropy values. After computing similarity computation to applied Approximate Relevancy(AR)...
متن کاملFeature Subset Selection by Using Sorted Feature Relevance
Real world classification applications usually have many features. This increases the complexity of the classification task. Choosing a subset of the features may increase accuracy and reduce complexity of the acquired knowledge. We present a new feature subset selection method by using sorted feature relevance. We tested the new method on real world and artificial datasets and compared its res...
متن کاملFuzzy C Means Clustering Algorithm for High Dimensional Data Using Feature Subset Selection Technique
Feature choice involves characteristic a set of the foremost helpful options that produces compatible results because the original entire set of options. A feature choice rule is also evaluated from each the potency and effectiveness points of read. Whereas the potency considerations the time needed to search out a set of options, the effectiveness is expounded to the standard of the set of opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2015
ISSN: 0975-8887
DOI: 10.5120/ijca2015906344